
ESCI 379 – Python Programming for Advanced Earth Sciences Applications

BASEMAP

• Basemap is a matplotlib

projections.

• The documentation for basemap

http://matplotlib.github.com/basemap

• The first step to using basemap

from mpl_toolkits.basemap import Basemap

• We then create a map object by typing

m = Basemap(projection =

where proj_type is a valid projection type, and

and arguments (which depend on the projection type chosen).

• As an example we will create an orthographic projection using the example code below:

from mpl_toolkits.basemap import Basemap

import matplotlib.pyplot as plt

import numpy as np

m = Basemap(projection = 'ortho',lat_0 = 40, lon_0 =

m.drawmapboundary(fill_color = 'white')

m.drawcoastlines(color = 'black',linewidth = 0.5)

m.fillcontinents(colo

m.drawparallels(np.arange(

m.drawmeridians(np.arange(

plt.show()

which creates the plot

Programming for Advanced Earth Sciences Applications

Lesson 9 – Maps and 3-D Plots

matplotlib toolkit for plotting data on geographically-referenced map

basemap can be found at

http://matplotlib.github.com/basemap

basemap is to import it using the command

from mpl_toolkits.basemap import Basemap

We then create a map object by typing

m = Basemap(projection = proj_type, kwds/args)

is a valid projection type, and kwds/args are additional keywords

and arguments (which depend on the projection type chosen).

As an example we will create an orthographic projection using the example code below:

mpl_toolkits.basemap import Basemap

import matplotlib.pyplot as plt

import numpy as np

m = Basemap(projection = 'ortho',lat_0 = 40, lon_0 =

m.drawmapboundary(fill_color = 'white')

m.drawcoastlines(color = 'black',linewidth = 0.5)

m.fillcontinents(color = '0.85')

m.drawparallels(np.arange(-90, 91,30))

m.drawmeridians(np.arange(-180,180,30))

Programming for Advanced Earth Sciences Applications

referenced map

are additional keywords

As an example we will create an orthographic projection using the example code below:

m = Basemap(projection = 'ortho',lat_0 = 40, lon_0 = -80)

m.drawcoastlines(color = 'black',linewidth = 0.5)

2

o In this example, proj_type is ‘ortho’ which is short for ‘orthographic’.

o lat_0 and lon_0 are the central latitude and longitude.

o The map methods drawmapboundary(), drawcoastlines(),

fillcontinents(), drawparallels(), and drawmeridians() are fairly

self-evident, but we will revisit them shortly.

• There are many different projections available to basemap. The table below shows the

available projections.

Projection proj_type

Azimuthal Equidistant ‘aeqd’

Polyconic ‘poly’

Gnomonic ‘gnom’

Mollweide ‘moll’

Transverse Mercator ‘tmerc’

North-Polar Lambert Azimuthal ‘nplaea’

Gall Stereographic Cylindrical ‘gall’

Miller Cylindrical ‘mill’

Mercator ‘merc’

Sterographic ‘stere’

North-Polar Stereographic ‘npstere’

Hammer ‘hammer’

Geostationary ‘geos’

Near-Sided Perspective ‘nsper’

van der Grinten ‘vandg’

Lambert Azimuthal Equal Area ‘laea’

McBryde-Thomas Flat-Polar Quartic ‘mbtfpq’

Sinusoidal ‘sinu’

South-Polar Stereographic ‘spstere’

Lambert Conformal ‘lcc’

North-Polar Azimuthal Equidistant ‘npaeqd’

Equidistant Conic ‘eqdc’

3

Cylindrial Equidistant ‘cyl’

Oblique Mercator ‘omerc’

Albers Equal Area ‘aea’

South-Polar Azimuthal Equidistant ‘spaeqd’

Orthographic ‘ortho’

Cassini-Soldner ‘cass’

South-Polar Lambert Azimuthal ‘splaea’

Robinson ‘robin’

• Depending on the map projection the region is specified by either the following

keywords:

o lon_0 – center longitude (degrees)

o lat_0 – center latitude (degrees)

o width – width of domain (meters)

o height - height of domain (meters)

or

o llcrnrlon – lower-left corner longitude (degrees)

o llcrnrlat – lower-left corner latitude (degrees)

o urcrnrlon – upper-right corner longitude (degrees)

o urcrnrlat – upper-right corner latitude (degrees)

• There are many additional basemap keywords used for controlling the drawing of the

map and setting up projections. Some of these are:

Keyword Values Purpose

resolution c, l, i, h, or f Resolution of the database for continents,

lakes, etc. Initials stand for crude, low,

intermediate, high, and full. The default is

crude.

area_thresh number representing

square kilometers

Will not draw lakes or coastal features that

have an area smaller than this threshold

rsphere radius of the globe in

meters

Defaults to 6370997. Can be changed, or

even given as major and minor axes for

plotting on an ellipsoid.

4

MAP METHODS FOR DRAWING FEATURES ON MAPS

• There are many methods for plotting coastlines, continents, rivers, etc. Some of these

are summarized below.

o For many of the methods the linewidth and color can be specified, but not the

line type. Solid is often the only option.

• drawcoastlines() – Draws coastlines.

• drawcountries() – Draws country boundaries.

• drawgreatcircle(lon1, lat1, lon2, lat2, del_s = f) – Draws a

greatcircle between two lat/lon pairs. del_s is the spacing (in km) between points.

• drawmapboundary() – Draws boundary around map projection. The fill color is

specified with the keyword fill_color.

• drawmapscale(lon, lat, lon0, lat0, length) – Draws a scale at the

position given by lon, lat. The distance is for the position of lon0, lat0.

Additional keywords are:

o units – The units for the scale (‘km’ is default)

o barstyle – ‘simple’ or ‘fancy’

o fontsize – default is 9

o color – default is ‘black’

o labelstype – ‘simple’ or ‘fancy’

o format – a string format statement of the type ‘%3.1f’ and such.

o yoffset – controls the scale height and annotation placement.

o fillcolor1, fillcolor2 – controls colors for alternating regions of scale for

‘fancy’ style.

• drawmeridians(mlist) – Draws meridians with values given by mlist. In

addition to color and linewidth, additional keywords are:

o dashes – Pattern for dashed lines, of the form [on,off] where on is the number

of adjacent pixels turned on, while off is the number that are turned off. The

default is [1,1].

5

o labels – Four values in the form [left, right, top, bottom] that control

meridian labeling. These are Boolean in that 1 is on and 0 is off. So, [1,0,1,0]

would label the meridians at the left and top of the plot.

o labelstyle – Controls whether labels use +/- or E/W. The default is E/W unless

labelstyle = ‘+/-’.

o fmt – This formats the labels using the format statements of the type ‘%3.1f’ and

such.

o xoffset, yoffset – Label offsets from edge of map.

o latmax – Controls maximum latitude for drawing meridians (default is 80).

• drawparallels(plist)) – Draws latitude parallels with values given by mlist.

Keywords are essentially the same as for drawmeridians().

• drawrivers() – Draws rivers on map.

• drawstates() – Draws state boundaries.

• fillcontinents(color = ‘brown’, lake_color = ‘blue’) – Fills

continents and lakes with specified colors.

• There is also a method for reading a GIS shapefile. This method is called

readshapefile(). Details of its use can be found in the online documentation.

PLOTTING DATA ON MAPS

• Data can be plotted on maps by using the contour(), contourf(), plot(),

quiver(), barbs(), and drawgreatcircle() methods for map objects.

o These methods work pretty much just like the corresponding axes methods, with

some exceptions.

• When plotting on the maps the latitudes and longitudes have to be converted into map

coordinates.

o This is accomplished by calling the map object with the longitude and latitude as

arguments. This returns the x and y coordinates on the map projection.

x,y = m(lon,lat)

o To go from map coordinates back to longitude and latitude we use the inverse

keyword.

lon, lat = m(x, y, inverse = True)

• The example below reads in 1000 mb height data, latitudes, and longitudes from a

numpy NPZ file (jan1000mb.npz

an orthographic projection using

from mpl_toolkits.basemap import Basemap

import matplotlib.pyplot as plt

import numpy as np

m = Basemap(projection = 'ortho',lat_0 = 40, lon_0 =

m.drawmapboundary(fill_color = 'white')

m.drawcoastlines(color = 'black',linewidth = 0.5)

m.fillcontinents(color = '0.85')

m.drawparallels(np.arange(

m.drawmeridians(np.arange(

data = np.load('jan1000mb.npz')

lon = data['lon']

lat = data['lat']

z = data['z']

x,y = m(lon,lat)

cs = m.contour(x,y,z, levels = range(

plt.clabel(cs, fmt = '%.0f', inline = True)

plt.show()

3-D PLOTTING

• 3-D plotting is accomplished using the

• The functionality of this module is

are not fully implemented.

• 3-D plots can be rotated and viewed from different angles.

• The example below shows how to plot a 3

import numpy as np

import matplotlib.pyplot as plt

6

The example below reads in 1000 mb height data, latitudes, and longitudes from a

jan1000mb.npz, available on the class website) and plots them on

an orthographic projection using contour().

from mpl_toolkits.basemap import Basemap

import matplotlib.pyplot as plt

m = Basemap(projection = 'ortho',lat_0 = 40, lon_0 = -80)

m.drawmapboundary(fill_color = 'white')

m.drawcoastlines(color = 'black',linewidth = 0.5)

s(color = '0.85')

m.drawparallels(np.arange(-90, 91,30), color = '0.25', linewidth = 0.5)

m.drawmeridians(np.arange(-180,180,30), color = '0.25', linewidth = 0.5)

data = np.load('jan1000mb.npz')

cs = m.contour(x,y,z, levels = range(-180,360,30),colors = 'blue')

plt.clabel(cs, fmt = '%.0f', inline = True)

D plotting is accomplished using the mpl_toolkits.mplot3d.axes3d

The functionality of this module is not complete, but is being worked on. Some features

D plots can be rotated and viewed from different angles.

The example below shows how to plot a 3-D spiraling line.

import matplotlib.pyplot as plt

The example below reads in 1000 mb height data, latitudes, and longitudes from a

and plots them on

90, 91,30), color = '0.25', linewidth = 0.5)

180,180,30), color = '0.25', linewidth = 0.5)

180,360,30),colors = 'blue')

mpl_toolkits.mplot3d.axes3d module.

not complete, but is being worked on. Some features

import mpl_toolkits.mplot3d.axes3d as ax3d

z = np.arange(0,-100.0,

x = np.exp(z/20.0)*np.cos(2*np.pi*z/20.0)

y = np.exp(z/20.0)*np.sin(2*np.pi*z/20.0)

fig = plt.figure()

a = ax3d.Axes3D(fig)

a.plot(x,y,z)

plt.show()

• The examples below show how to plot a

wireframe plot with contours overlain. Details can be found in the online

documentation. All the examples use the

website.

• 3-D contour plot:

import numpy as np

import matplotlib.pyplot as plt

import mpl_toolkits.mplot3d.axes3d as ax3d

h = np.load('heights.npy')

shp = np.shape(h)

x = np.zeros_like(h)

y = np.zeros_like(h)

for i in range(0,shp[0]):

 for j in range(0, shp[1]):

 x[i,j] = i

 y[i,j] = j

fig = plt.figure()

a = ax3d.Axes3D(fig)

7

mpl_toolkits.mplot3d.axes3d as ax3d

100.0, -0.1)

x = np.exp(z/20.0)*np.cos(2*np.pi*z/20.0)

y = np.exp(z/20.0)*np.sin(2*np.pi*z/20.0)

a = ax3d.Axes3D(fig)

The examples below show how to plot a 3-D contour plot, a 3-D surface plot, and a 3

wireframe plot with contours overlain. Details can be found in the online

documentation. All the examples use the heights.npy data file from the class

tplotlib.pyplot as plt

import mpl_toolkits.mplot3d.axes3d as ax3d

h = np.load('heights.npy')

x = np.zeros_like(h)

y = np.zeros_like(h)

for i in range(0,shp[0]):

for j in range(0, shp[1]):

a = ax3d.Axes3D(fig)

D surface plot, and a 3-D

wireframe plot with contours overlain. Details can be found in the online

data file from the class

a.contour(x,y,h)

plt.show()

• 3-D surface plot:

import numpy as np

import matplotlib.pyplot as plt

import mpl_toolkits.mplot3d.axes3d as ax3d

h = np.load('heights.npy')

shp = np.shape(h)

x = np.zeros_like(h)

y = np.zeros_like(h)

for i in range(0,shp[0]):

 for j in range(0, shp[1]):

 x[i,j] = i

 y[i,j] = j

fig = plt.figure()

a = ax3d.Axes3D(fig)

a.plot_surface(x,y,h,rstride = 5,cstride = 5)

plt.show()

8

import matplotlib.pyplot as plt

import mpl_toolkits.mplot3d.axes3d as ax3d

h = np.load('heights.npy')

x = np.zeros_like(h)

like(h)

for i in range(0,shp[0]):

for j in range(0, shp[1]):

a = ax3d.Axes3D(fig)

a.plot_surface(x,y,h,rstride = 5,cstride = 5)

• 3-D wireframe plot with contours

import numpy as np

import matplotlib.pyplot as plt

import mpl_toolkits.mplot3d.axes3d as ax3d

h = np.load('heights.npy')

shp = np.shape(h)

x = np.zeros_like(h)

y = np.zeros_like(h)

for i in range(0,shp[0]):

 for j in range(0, shp[1]):

 x[i,j] = i

 y[i,j] = j

fig = plt.figure()

a = ax3d.Axes3D(fig)

a.plot_wireframe(x,y,h,rstride = 5,cstride = 5,linewidth =

0.5, color = '0.6')

a.contour(x,y,h,linewidth = 2)

plt.show()

9

D wireframe plot with contours:

mport matplotlib.pyplot as plt

import mpl_toolkits.mplot3d.axes3d as ax3d

h = np.load('heights.npy')

x = np.zeros_like(h)

y = np.zeros_like(h)

for i in range(0,shp[0]):

for j in range(0, shp[1]):

a = ax3d.Axes3D(fig)

a.plot_wireframe(x,y,h,rstride = 5,cstride = 5,linewidth =

a.contour(x,y,h,linewidth = 2)

a.plot_wireframe(x,y,h,rstride = 5,cstride = 5,linewidth =

10

